Evidence for nucleotide excision repair as a modifying factor of O6-methylguanine-DNA methyltransferase-mediated innate chloroethylnitrosourea resistance in human tumor cell lines.

نویسندگان

  • Z P Chen
  • A Malapetsa
  • A McQuillan
  • D Marcantonio
  • V Bello
  • G Mohr
  • J Remack
  • T P Brent
  • L C Panasci
چکیده

We examined the O6-methylguanine-DNA methyltransferase (MGMT) protein as well as MGMT activity levels and the excision repair cross-complementing rodent repair deficiency gene, ERCC2 (XPD), protein levels in 14 human tumor cell lines not selected for chloroethylnitrosourea (CENU) resistance. These results were compared with 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) cytotoxicity and UV light sensitivity. MGMT protein correlated significantly with MGMT activity (r = 0.9497, p = 0.0001). There was no significant linear correlation between BCNU cytotoxicity and MGMT content as determined by both Western analysis (r = 0.139, p = 0. 6348) and activity assay (r = 0.131, p = 0.6515). However, MGMT-rich cell lines were found to be more resistant than MGMT-poor cell lines to BCNU (t = 2.2375, p = 0.0225) but not to UV (t = 1.1734, p = 0.1317). Furthermore, the most BCNU-sensitive cell lines were all MGMT-poor. UV sensitivity was significantly correlated to BCNU cytotoxicity (r = 0.858, p = 0.0001). Significant correlations were found between ERCC2 protein levels and BCNU cytotoxicity (r = 0.786, p = 0.0009) or UV sensitivity (r = 0.874, p = 0.0001). Our results confirm that MGMT plays an important role in CENU resistance, but not in UV resistance. The correlation of UV sensitivity with BCNU cytotoxicity suggests that nucleotide excision repair is an important modifying factor of MGMT-mediated innate CENU resistance in human tumor cell lines, especially in highly resistant cell lines. ERCC2 may be implicated in this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for Nucleotide Excision Repair as a Modifying Factor of O-Methylguanine-DNA Methyltransferase-Mediated Innate Chloroethylnitrosourea Resistance in Human Tumor Cell Lines

We examined the O-methylguanine-DNA methyltransferase (MGMT) protein as well as MGMT activity levels and the excision repair cross-complementing rodent repair deficiency gene, ERCC2 (XPD), protein levels in 14 human tumor cell lines not selected for chloroethylnitrosourea (CENU) resistance. These results were compared with 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) cytotoxicity and UV light s...

متن کامل

The DNA repair protein O6-methylguanine-DNA methyltransferase protects against skin tumor formation induced by antineoplastic chloroethylnitrosourea.

Chloroethylnitrosoureas (CNUs) are being used in the therapy of various neoplastic diseases, including skin cancer. Because secondary tumor formation is a serious threat in chemotherapy with these drugs, we explored whether and to what extent the DNA repair protein DNA-O6-methylguanine:protein-L-cysteine S-methyltransferase (MGMT) protects against CNU-induced tumors. We made use of transgenic m...

متن کامل

Extraneuronal monoamine transporter expression and DNA repair vis-à-vis 2-chloroethyl-3-sarcosinamide-1-nitrosourea cytotoxicity in human tumor cell lines.

We previously found that 2-chloroethyl-3-sarcosin-amide-1-nitrosourea (SarCNU), a new chloroethylnitrosourea analogue presently in phase I clinical trials, is a selective cytotoxin that enters cells via the extraneuronal transporter for monoamine transmitters (EMT). In this study, we assessed whether EMT expression correlates with SarCNU cytotoxicity by determining EMT expression in 23 human tu...

متن کامل

Mechanisms of chemoresistance to alkylating agents in malignant glioma.

Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but t...

متن کامل

O6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer?

Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 52 5  شماره 

صفحات  -

تاریخ انتشار 1997